“" AD=AU89 461 VIRGINIA POLYTECHNIC INST AND STATE UNIV BLACKSBURG =-ETC F/¢ 9/2
GENERIC DATA TRANSACTION SYSTEM. VERSION 2. SYSTEM DESIGN. (U}
MAR 79 J E EVANSs L H MASON» R C WILLIGES N00123-75-C-1501
UNCLASSIFIED VPI=HFL=-79-2/NPRDC-79-1

NN EEREEN

END
l ;

T R e S e e e SR e

v

GENERIC DATA TRANSACTION SYSTEMN:
VERSION 2 SYSTEM DESIGN
by
John E. Evans, III

L. Hardy Masoun

HFL-79-2/NPRDC-79-1

March 1979

Prepared Under Contract to
Navy Personnel Research and Development Center

San Diego, California 92152

Contract No. NO0123-78-C-1401

Principal Investigator

Robert C. Williges

Approved for public release; distribution unlimited.
Reproduction in whole or in part is permitted for
any purpose of the United States Governnment.

bers &g

X
*
[

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE BEF O e N RM

|7, REPORT NUMBER 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

L
—

22 oo
!

op COVERE
Technical ,R'e orte
15 July 4978 - 15 July 79

4. TITLE (and Subtitle) 5.

ERIC %ATA TRANSACTION sysmm \
1 JERSION SYS'TEM DESIGN. e
| N

HFL—79—2/NPRDC—79-

\7 AUTHOR(®) ;= O o NPRACT O BER(s) 3
/& | John E. Evans: / 7 '-—Eﬁ——-———_ -
L. Hardy/Mason ?0\4% c.)‘/ ', ?{fﬁ NgO123-78-C-14 B
| LINdSL 23— gg g g |
Human Factors Laboratory A& woax UNIT NU BERS ©
Dept. of Industrial Engineering & Operations Res. 6275/N (HF Simufation

Virginia Polytechnic Institute & State University ZF57- 525 001 0%2 (le: Mannedh
Blacksburg, VA 24061 o [o

11. CONTROLLING OFFICE NAME AND ADDRESS

Design of Manned Systems Program (// 5
Navy Personnel-Research & Development Center e

San Diego, California 92152
LX] MONIT_ORING AGENCY NAME l AODRESS(i! different from Controlling Office) 15. SECURITY CLASS. (of this report)

—l,,.——-'*

9. PERFORMING ORGANIZATION NAME AND ADDRESS

' N N e =

@FI’ / o Unclassified

> TSa DECLASSIFICATION DOWNGRADING
7 ZF / SCHEOU
/wp‘

16. DISTRIBUTION STATEMENT (of Mrie-Reporty =" =" R

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, 11 different from Report)

ibaliiiiesinirincatelnd

18. SUPPLEMENTARY NOTES

| "oNl SN SN BN N NN
~

19. KEY WORDS (Continue on reverse slde if necessary and identify by block number)

i plasma panel application, minicomputer applications, information base software,
transaction system, table driven software, touch panel applications, event

/ based emulator, embedded operator performance measurement, computer aided

(behavior research

20. ABSTRACT (Continue on reverse side If necessary and ldenllly7b§ dlock number)

This report and its companion (HFL- 3/NPRDC—79 -2) supercede HF1-78-2/

ggggg;lazz, documenting an enhanced version of the same system. The program

escribed is a machine dependent, table driven, general software system written
for the advanced programmer to communicate the internal operations of the soft-
ware. Included are a description of data structures, program logic, and user
interfaces. The Fortran IV software processes randomly accessed data which are
tree structured by file, record, page, and field, and includes a functionally
complete primitive command language, a display format processor, and provision

for user supplied software appendages. g

DD | on'ss 1473 eoimion oF 1 NOV 6813 OBsOLETE Unclassified >,

'</j_.£) ﬂﬁ 2, SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered: [<
-~

m b e -
’
I
/
/

/

l
Y

This report and its coapanion (HPL-79-3/NPRDC~79-2) - supercede

e e e

HFL-78-2/NPRDC-78-2, a previous report by the same authors.

(EBvans, J.E., III and NMason, L.H. Generic data transaction 4 §
systenm: systen design. ” Blacksbﬁtg; Virginia:s Virginia]]

Polytechnic Institute and State University, HPL-78-2/HPRDC-78-2,

July, 1978.)

Accession For

NTIS GRAXL
DDC TAB

Unannounced
Justification_____

By

Distrituiion/

Avajinbilivy Codes
avalland/or
Dist special

q

iii

A
AN DR ok E NN, Sy,

ACKNOWLEDGMENT

This report describes work performed at Virginia Polytechnic

Institute and State University under comtracts N00123-77-C-1081
and NO0123-78-C~-1401 with the Navy Personnel Research and
Development Center. Dr. Frederick Muckler served as the
scientific monitor. The opinions expressed 1in this report are
those of the authors, and do not necessarily represent the viewus
of the Navy Personnel Research and Development Center or the U.S.

Navye.

e) " I PR R . 8 o s s AR A AT A R e S Ll AP s N0 e R s

SUMMARY

Problen

A software system is required which will allow the experimental
investigation of embedded operator performance evalvation
techniques in data transaction systenms. To permit meaningful
research, the system must provide the experimenter a wide latitude

in the design and generation of a data transaction task.

Approach

A generic data transaction system was appraised to be a
suitable vehicle for attaining the above stated goals. Such a
system would consist of a functionally complete set of primitive
operators which could be used to process a random access dataset.
Through the use of a hierarchically organized description, a
prograsmer would communicate to the generic system the definition

of a specific application, i.e., record and display formats. The B

additional provision for user supplied software appendages at

strategic points in the generic system imparts syntactic and

semantic extensibility to the native minimal query language.

bomed ed bend) bend bt bemd et Gmd SN BN NN B BB o e

Y

Results

A generic data transaction system was implemented in FORTRAN IV
and Assembly language on a minicomputer with 28K words of memory,
a cartridge disk subsystem, a programmable real time clock, and a
plasma panel terminal {(including 512 by 512 pixel ac plasma panel,
32 by 32 resolution touch sensitive panél,. and ASCII or PLATO
keyset) . The flexibility and extensibility bf the generic system
were found to be acceptable for the implementation of experimental

’

(research and non-research) applications.

Wi i ine e, amt

Conclusion . . &8 i

b Seme Smse oeer SE DB BB m

A table driven generic data transaction system consisting of a

- functionally complete set of primitive operators and an exteasible

o P A

- minimal query lanquage is a desirable vehicle for allowing
experimental investigation into many aspects of the desigan and
utilization of data transaction systems. Additionally, due to the s j

relative ease with which an application may be created or

nodified, the generic system has merit in a non-research §

environment as well, ;

i Reconmmendation

The generic system approach which was applied to event-based

PPNy
. '

systems in this investigation should also be applied to time-based

T systems with the expectation of similar encouraging results.

-

vi

gy bt e

TS ot BRI O LA T RS F 2

& 3

)

bt

D v e e A W R e e ol e Ny Gl

DISCLAIMER

The softvare system described in this document is the product
of the authors alone and does not incorporate any suggestions from
any other individuals or uncited sources. The authors make no
guarantee of the accuracy of any part of this document or the
sof tware system and assume no responsibility or liability for any
consequences of its usage under any conditions. Duplication of
the documentation or software vwvhether in part or in full by
vhatever means and for whatever purpose is permitted only with the

inclusion of proper reference to authorship.

TABLE OF CONTENTS

Introduction « « « < »

Control CyClea « o = o =

Primitive Conmands « « « «

1.0 System- and File-Oriented Commands

2.0 Record-Oriented Commands .

3.0 Page—-0Oriented Commands .

x 4.0 Field-Oriented CommandSae =« o « a « o o« « = « 8
& 5.0 Special Key FUNCIONS o o « = = 2 o » =« o » =« 9
]

Iv. File StrUCtUre +. o « « « « « = = = © = o« o« o = = « 10

, 1.0 INtroduction o v« o« ¢ «a o« o « « ¢ o =« = « » o 10

' 2.0 DAta Filee « = « = o = = o o o o o o o v oo 10

{ 2.1 Control RECOrd « « « w « o a w = » » = 10

.3 2.2 Data RECOLAS v « ¢ = = = =« « = = o « =« 11

E - 3.0 Status Fil€e o o o« ¢ o o © « o » o« o =« = « o« 12
b

é ‘ v. Data 0rqganizatioN. o« o o« @« o = » s @« o o o« « o« o « 13

-
B maiic §

]

1.0 Introduction « o« ¢ ¢ o = o © e o = o« o a « « 13
2.0 MEMORY v « © ¢ @« 2 @ = 2 s« « = o a « »« « = =« 14
3.0 USer DAtAc « =« @« o o = = @ o = v « s« o« o =« = 16

3.1 CSTATE @ w6 o 4 o « @ @ = @« o« « = = « = 16

3. 2 ACCBLK L J - - - - - L J - L J [J - - - L] - - 17

| amad) [S]

viii

g

P Y i G gl il s A ECE A Chac INFRREE S20 S o4 thmw AL VRN

B e ou L e ad

s Gmm I B B B O Ow .

——

4.0

File Definit
4.1 FLDSCR
4.2 RNDSCR
4.3 RNTABL
b b RNIMAG
4.5 RTTABL
4.6 Record

6.1

ion (s)

Defin
RDESCR
SMDSCR
SMTABL
SIMAGE
DDESCE
DTABLE
FORMAT
PGDSCR
PGTABL

PGIMAG

ition(s)

Page Definition(s)

111
11.2
11.3
11.4
11.5
11.6
11.7

11.8

PDESCR.
TDESCR.
TTABLE.
FDESCR.
FTABLE.
SDESCR.
SSTABL.

SSTRNG.

ix

19
19
21

21

22
22
23
23
24
24
25
25
26
26
27
27
27
23
29
29
30
30
i
31

32

f;ggﬁii

5.0 Data Record 1/0 Area(sS)- « -«
5.1 RECOBD o v« « o ¢ o = o
5.2 DATA o o @ ¢ o = « « «
6.0 Status Record I/0 Area(s). .
6.1 STATUS © v @ o « « « =
6.2 STATEL @ « o =« = « = =
7.0 Buffer Control « o v o « « =
7.1 BUFCTL o o « = o o « o

Vi. CommOon BlOCKSe o o o = o o = = « =

VII. Procedure Descriptions . « « « « =«

VYIilI. File Creation/Maintenance Utility.

IX. Application Specific Procedures. .

Appendix A: State Tables o o v o « « o o o

Table 1: State Table for BSCAN . .

Table 2: State Table for BOOLN . .

37
37

39

41

63

65

70

7

73

R e s Tt D W

I, INTRODUCTION

In order to allow the experimental investigation of embedded
operator performance evaluation techniques 1in data transaction
systems, a dJeneric data transaction system was developed with
which many different tramsaction systems could be implemented and
studied. The subject interface to the generic system consists
essentially of a 512 by 512 pixel ac plasma panel output device on
which formatted alphanumeric and graphical information may be
displayed, and a (ASCII or PLATO) keyboard and 32 by 32 resolution
touch sensitive panel through which the subject may interact with

the systenm.

To provide the flexibility necessary for the implementation by
the experimenter of both novel and conventional but dissimilar
data transaction systems, it was necessary that a table driven
scheme be used in the design of the geperic systen. Through the
use of the available tables (or descriptors) explained in this
document, the experimenter is allowed a wide 1latitude in the .
design and generation of a data transaction task for use in his
research. Also, the generic system provides a functionally
complete set of primitive operations from which complex query
languages may be constructed by the experimenter. Alternatively,
if the experimenter desires, the primitive command language can be
used directly as provideda The 1information base for the gemeric

system consists of nonhomogeneous hierarchically organized (file,

|
i
i
i
I
l
I
l
l
I
I
I
l
l
I
I
I
I
{

record, page, field) binary coded data stored on direct access

online mass storage.

The entire generic system was implemented on a PDP 11/55 mini-
computer with 28K words of core memory, an RK0S disk drive with
RK11 controller, a KW11-P real time clock, all manufactured by
Digital Equipment Corp., and a GCC-1B plasma panel terminal

manufactured by Information Technology Ltad.

This technical report is the first of three documents
describing the Gemeric Data Transaction System. The second,
{(HFL-79-3/NPRDC-79-2), contains a complete set of source listings
for the systen. The third, (HFL-79-4/NPRDC-79-3), contains a

user's guide and sample application-specific user routines.

II. CONTROL CYCLE

The execution of the generic data transaction system consists
of an initialization phase during which files are opened, control
variables are initialized, and completion routines are specified,
followed by the execution phase which <conrsists of a siagle loop
within which either a command is interpreted and executed or a
field update is applied. Asynchronously, the touch panel may be
used in the specification of a field for wupdating. The optional
user timing of character writing delays as a synchronous extension
of the plasma panel interrupt handler occurs asyanchronous to the
rest of the execution phase and program termination occurs
synchronously 1in response ¢to a <CTRL-C> egquivalent on the
keyboard. The following outline summarizes the (optional)

operations.

I. 1Initialization
A. Open files
B. Control variable assignments
C. Specify completion routines

(D. User supplied initialization)

II. Execution

A. User-performance recording

B. Input prompting (user supplied prompting)

- J ., o e s el L w e AR ot T o PR A T Ly i Wb T T TS
Bt il AU A S R Vet R B £ s WSl g S L PG G N ' R e de b L e S

B

C. Conmmand input; also, translate end-of-file to
<CTRL-Z> command, and error to <CTRL-C> command
D. User-performance recording
E. Update mode:
1. Preliminary verification or update request
cancellation
2. {(User supplied conversion (and field updating))
and/or conversion and field updating
3. Error reporting (user supplied messages) and
user-performance recording

F. or command mode:

1. (User supplied command interpretation {(and
execution)) and/or command interpretation, and
user-performance recording

2. Command execution - select from:

a. LOGON (user supplied messages)
i. Control record processing
ii. Device activation
(iii. User supplied extensions)
b. LOGOFF
] i. Final record processing
| ii. Control record processing
. iii. Device deactivation

- {iv. User supplied extensions)

¥

»>

C. SELECT (user supplied comparisons and/or

I messages)

d. RELEASE (user supplied messages)

| v

5
Py

L e IR R NPEES: TR L Lt e R g R R e LR L PR

€. ADD/INSERT
f. DELETE
g Record accessirg (user supplied messages)

h. Page accessing (user supplied timing)

i. Field accessing and switch to update mode
j. Update cancellation
3. Error reporting (user supplied messages) and

user-performance recording

- e n ik

it

III. Touch panel (asynchronous)

A. Coordinate translation (user supplied preprocessing)

Be Field selection

C. Field accessing (user supplied timing) and switch

to update mode

{IV. Character writing {user supplied timing) (asynchronous))

V. Termination
A. Drain I/O queues
B Device termination

(C. User supplied termination)

l
i
i
i
i
1
l
|
!
!
l
l
i
]
I
I

$ocan @

L

III. PRIMITIVE COMMANDS

1.0 System- and File-Oriented Commands

LO - LOgon, LOgoff

2.0 Record~Oriented Commands

A,AD <name> - Add - add a record of the named type to the

file. The record is added immediately

after the current record, or in place of
the record just deleted (if any), or at
the end of the file if no record has yet

been accesseda.

oy ows ees Son 55 N BN B B e

I,IN <name> - Insert - insert a record of the named type into

the file. The record is inserted
1 immediately before the current record,

or in place of the record just deleted

rY

{(if any), or at the beginning of the

&

file if no record has yet been accessed.
EX - EXclude - exclude the current record from the
vorking subset.
D,DE - Delete - delete the current record from the filea
R,RE,RL - Release - expand the working subset to include all

allocated recordsa

(2] [] S [.

Bkt h o oChatan il . ol i i o Lodt Lads o L o Ll e

;oo

-y
4

S,SE (<bexpr>)

- Select

<bexpr>

<bvalue>
<uop>
<bop>
{rop>

<value>

CR - Current Record

Next Record

F,FO <number>

PR

- Forward

Previous Record

B,BA <aumber> - Back

FR

LR

First Record

Last Record

- selects a working subset of the file
based on (Boolean combinations of)
relational or logical values of field(s)-.

:= <bvalue> | ({<bexpr>) |

<uop><bexpr> | <bexpr><bop><bexpr>

1= (<name><rop><value>) | <nanmed>

NOT | =

& | AND | OR | |

= { EQt > GT | LT | < | NE | LE | GE

s= <string> | '<string>?

access the current record in the working
subset. {An effective NOP.)
- access the next record in the working

subset.

- access the nth subsequent record in the
vorking subset.

- access the previous record in the working
subset.

- access the nth previous record in the
vorking subset.

- access the first record in the working
subset.

- access the last record in the vorking

subset.

F P ke UL RN R, ST b L ¥ R
~1 Ao NIRRT P IR R

the current page,

next page in the current

previous page in the current

first page in the current

last page in the current

page in the current record

with the given name.

- display the nth page in the current

|
l 3.0 Page-Oriented Commands
' CP - Current Page - (re)display
l NP - Next Page - display the
records
l PP - Previous Page - display the
record.
' FP - First Page - display the
l record.
LP - Last Page - display the
l~ record.
. P,PA <name> - Page - display the
P,PA <number> - Page
| record.
4.0 Field-Oriented Commands
) CF - Current Field - access the
) page.
. BF - Next Field - access the
i PP - Previous Field - access the
I page.
FF - First FPield - access the
l page.
LF - Last Field - access the
I
i

curreat field in the current

next field in the current page.

previous field in the current

first field in the current

last field in the current page.

o p v S e s Y
; PSRy (AN i 3 08 SRR

-

-

R d

[A

[}

Sl Good Gund Gamd Sl

i
1
|
I
i
I
|
]
]
]

<nane>

<number>

<touch>

access the named field in the current
page.

access the nth field in the current page.
access the field touched (if touch

sensitive).

5.0 Special Key Functions

<CTRL-C> terminate execution.

<CTRL-U> throw away the current input line.

<CTRL-2Z> vhen modifying a field, leave the field
unchanged; otherwvise, leave the current
record unchanged.

<{rubout> delete the last character in the current
line.

R P PR T P L oy "

iodgudy Yo

eomd saw o= NN 0NN NN N D D

Gl bemd bemd Smw ey

10

IV. FILE STRUCTURE

1-0 Introduction

A logical file in the generic system consists of a physical
data file and a physical status filea The two files are managed

as a single entity by the generic systen.

2.0 Data File

The data file is a random access file in which the data
associated with a logical file 1is maintained by the generic
Ssystem. All records in the file are the same size, each record
being a wmultiple of 256 words. The file consists of a control
record followed by the data records. The data records consist of
two subsets of contiquous records (either, but not both, of which
may be empty):; the first subset are records which are in use
{allocated or deleted); the second subset are records which have

never been used.

2.1 Control Record

The first physical record of a data file is reserved for the

maintenance of the file by the generic systen. The format of the

NGNS SOBINALS A1 8.2 2 e e PPN v A SRS A

NP T e 4.,

¥
5
£

S T T T

1"

record is as follows:

Word 1 holds the number of records in the file.

word 2 holds the physical record number of the first unused record

in the file.

Word 3 holds the record size plus one of the records in the file.

Word 4 holds the physical record number of the first record om the

allocated list.,

Word S holds the physical record number of the first record on the

deleted list.

Word 6 holds the physical record rnumber of the last record on the

allocated list.

Word 7 holds the number of allocated records in the file.

The remaining words are unused and have undefined values.

2.2 Data Records

The first two words of each data record are reserved for future

changes to the systea. The third word of each data record

Mkt Sad

— cews oEN TR BN = ..

b B [——) L QY | L

[Qe)

i

i it

12
contains the (coded) record type of the record. The remaiming
words contain the actual data associated with the record. Any

excess words in the record, which must be a multiple of 256 words
in length, are unused and have undefined values. All contents of

a data record are undefined if the record is deleted or unused.

3.0 Status File

The status file is organized as a random—-access file of 256
word records. Each record’s format is identical to that of the
STATUS area, (described in section V.6), with the exception that
the contents of the final word are unpredictable. The allocated
data records are externally chained on a doubly-linked 1list
maintained in the STATEL status elements in the status file, The
deleted data records are externally chained on a singly-linked
list of STATEL status elements. The included/excluded status of
each allocated record in up to 15 vworking sets is recorded in the
status file with both deleted and unused records marked as if they
vere deleted. Excess STATEL status elements in the final record
of the status file are initialized as if for deleted records.
There is no STATEL status element for the control record of the
data file, so the physical position in the status file of a STATEL
status element associates it with the corresponding logical -

rather than physical - record in the data file.

g

i i

13

V. DATA ORGANIZATION

1.0 Introduction

The structure of this description of the data organization is
the same as the structure of the data organization itself. Thus
by reading through linearly, one can see the organization as a
vhole; or one can use the index to go directly to any block in
question. One point to note is that all definitions of files,
records, and pages are kept in memory, and that only the data in a
given record is swapped in and out. The system is entirely table-
driven, and unless otherwise noted all variables are two-bytes in

size (integer), and all indices are in units of two-bytes.

£ A IR BBt TN S Rl AP P R B W gt

—_—— o ewss ouum ond R BN B e e

-

14

2.0 MEMORY

MEMORY is at the same time the name of the universal array in
which all system tables and data are kept, and the name of the
block of nine words that appear at the beginning of that arraye

The uses of those particular nine words are as follows:

MEMORY(1) holds the index in MEMORY of the BUFCTL area. It must

be initialized to that value.

MEMORY(2) holds the index in MEMORY of the CSTATE area. Again,

this value must be initialized.

MEMORY(3) holds the length of MEMORY (as the universal array). It
is needed only by a debugging routine that dumps MEMORY, and if
that routine (DEFDMP) is to be used, MEMORY({3) must be initialized

to that length. Normally, however, this location may be igrnored.

MEMORY(4) holds the font width, It must be given that value

initially.

MEMORY(5) 1is currently unused, but is reserved for access to

multiple files.

MEMORY(6) 1is currently unused, but is reserved for access to

nultiple files.

oms ews omm 0N NN R AR BB O o

MEMORY(7) 1is currently unused,

pultiple files.

MEMORY({(8) is currently unused,

but is reserved for access

but is reserved for allocation

logical I/0 units in support of multiple files.

MEMORY (Y) 1s currently unused,

multiple users.

but is reserved for managenment

15

to

of

e St

A i o - i i L s & " o N A AT 11 7. ae i s ot R A D T IR b W4

16

3.0 User Data

3.1 CSTATE

The system mwmaintains, (and under a multi-user version would
maintain for each user), a bhlock called CSTATE, which describes
the current user state. The multiple user access arrangement is
not yet defined. The use of each o0f the ten words in CSTATE are

as follows:

CSTATE(1) holds the physical record number of the first record on

the included list. It is zero if there are no included records.

CSTATE(2) holds the physical record number of the last record on

the included list. It is zero if there are no included records.

CSTATE{3) holds ¢the index in CSTATE of the user's ACCBLK, and

should be initialized to that valuea

CSTATE(4) holds the index in MEMOKY of the user's RECORD area, and

should be initialized to that valued

CSTATE(S5) holds the index in MEMORY of FLDSCR. Under a multi-file
version, it would be initialized to zero, and given the index

value when a file was first accessed. Currently, it should be

given the index value initially.

4

B N e el bed

B e o e e

CSTATE(6) holds the index in FLDSCE of RDESCF. It is given the

index value when a record is accessed, and is zero when no record
is currently accessed. Under a nmulti-file version, it would be

zeroed by the system each time a nev file was accessed.

CSTATE{7) holds the index in RDESCR of PDESCR. It is zeroed each
time a record is accessed, and given the index value each time a

page 1is accesseda

CSTATE(8) holds the current field number. It is zeroed each time
a page 1is accessed, and assigpned the field number each time a

field is accessed.

CSTATE({9) holds the index in MEMORY of the next CSTATE area or

zero if this is the last CSTATE area.

CSTATE{10) holds the working set number curreatly in use. It must

be initialized to zero.

3.2 ACCBLK

The generic data transaction system maintains within this block

accunulated and current measurements of the interaction of the

operator wvith the system. The specific words are used as follows:

ACCBLK (1) holds the stroke count for the nost recently typed

. L gt e iy * e
A PR PPN v FT 5, P Wﬁq*\w

-

e wum B B O B O e

JRS—

T
3
{
‘
-

)‘ l
&

3
.

[T e R O R R Al g

18

entry.

ACCBLK(2) holds the rubout count for the most recently typed

entry.

ACCBLK({3) holds the line cancel count for the most recently typed

entrye

ACCBLK(4) holds the response time of the user to the most recent

prompt (in 60 hertz ticks).

ACCBLK (5) holds the typing time of the most recent entry (in 60C

hertz ticks).

ACCBLK(6) holds the elapsed time of the processing of the most

recent directive (in €0 hertz ticks)a.

ACCBLK(7) holds the number of commands processed by the systen.

ACCBLK(8) holds the number of errors processed by the system.

[T Y

L

P e P Uy P P S I L g D v e S L PO .

19

4.0 Pile Definition (s)

In the current implementation, there is but one (logical) file,
wvhich must be accessed by the user (with the procedure UINITL).
However the data organization allows any number of files to be
defined, each definition being a block as described in this
section, multiple definitions being arranged sequentially. in

MEMORY. The multiple file access arrangement is not yet defined.

e

4.1 FLDSCR

The file descriptor, FLDSCR, is a block of twelve words which

are used as follows:

FLDSCR(1) holds the index in FLDSCR of RNDSCR. It must be

initialized to that value.

. FLDSCR(2) holds the index im FLDSCR of RTTABL. Again, this value ;

must be initialized.

FLDSCR (3) holds the maximum number of records in the file,
including the control record, deleted records, and unused records.
The value is extracted from the file control record when the file

is opened.

FLDSCR(4) holds the physical record number of the first unused

]
I
l
I
i

et DR RLER R T R

K WNLI LIRS G RN IR T ARUCR Y AR ERTIBACE G - s A TP
g >

me e wew Smn N BN AN B B e

e

20

record in the file. The value is extracted from the file control
record wvhen the file is opened. If there are no unused records,

this location equals FLDSCR (3) +1.

FLDSCR(5) holds the record size plus one of records in the file,

and must be appropriately initialized.

FLDSCR(6) holds the physical record number of the first record on
the allocated list. It is zero if there are no allocated recoréds.
The value is extracted from the file control record when the file

is opened.

FLDSCR(7) holds the physical record number of the first record on
the deleted list. It is zero if there are no deleted records.
The value is extracted from the file control record when the file

is opened.

FLDSCR(8) holds the physical record number of the last record oc
the allocated list. It is zero if there are no allocated records.
The value is extracted from the file control record when the file

is opened.

PLDSCR(9) is the number of allocated records in the file. The
value is extracted from the file control record when the file is

opened.

FLDSCR(10) holds the physical record nuamber of the file status

e sl

Fy

cuy SN SR ER B e .

21

record currently in the STATUS area.

FLDSCR(11) holds the index in MEMORY of the STATUS area for the

file., It should be initialized to zero.

FLDSCR(12) is currently unused, but is reserved for accessing

multiple working sets.

4.2 BNDSCR

BENDSCR is a block of two words describing the record name

symbol table, a combination of RNTABL and RNIMAG.

REDSCR{Y) holds the 1index 1in RNDSCR of 8NIMAG, or zero if

RNDSCR(2) is zero.

RNDSCR(2) holds the number of record names in the table.

4.3 RNTABL

RNTABL and BRNIMAG together constitute the record name symbol
table. RNTABL describes the name images in RNIMAG, and holds the

record type for each record nanme. A record type may be unnamed,

have one or many nales.

|
I
i
i
I
I
I
I
1
f

a--3

[P |

RNTABL(1,n) holds the (coded) record type. Record types are

(contiguous) positive integers used as indices into RTTABL.

RNTABL(2,n) holds the index in RNIMAG of the (first twvo characters

of the) nth record name.

BNTABL(3,n) holds the length in characters of the nth record narme.

4.4 RNIMAG

RNIMAG is a packed string of record type names. Each name is

bequn on a word boundarye.

4.5 RTTABL

RTTABL, the record type table, 1links a record type with its

RDESCR.

RTTABL(n) holds the index in FLDSCR of the RDESCR for record type

sumber n.

4.6 Record Definitioa(s)

Record definitions are repeatable within a given file

23

definition, just as file definitions are repeatable within MEMORY.
Multiple record definitions are concatenated at this point in the

file definition, and are located through RTTABL.

4.6. 1 RDESCR

The record descriptor, RDESCR, 1is a block of five words which

are used as follows:

RDESCR(1) holds the index in RDESCR of the first PDESCR.

RDESCR(2) holds the index in RDESCR of SMDSCR.

RDESCR(3) holds the index in RDESCR of FORMAT.

RDESCR (4) holds the index in RDESCR of DDESCR.

l
i
i
i
1
1
I
I
I
I
]
I

- RDESCR(5) holds the index in RDESCR of PGDSCRa

-

L a? |

8.6.2 SMDSCR

& e d

SMDSCR is a block of two words describing the field name symbol

ey

table, a combination of SMTABL and STMAGE.

fo |

SHDSCR(1) holds the index in SMDSCR of SIMAGE, or zero |if

24

SMDSCK{2) is zero.

SMDSCR(2) holds the number of symbols in the table.

4.6.3 SMTABL

R T At sanen a2

SMTABL and SIMAGE together constitute the field name symbol
table. SMTABL describes the name images in SIMAGE, and points to i
the entry in DTABLE for each field named. Fields may have no

name, one, Or Mahy nhames.

SHMTABL{1,n) holds the index (second subscript) of the entry for g |

the field in DTABLE.

-
} SMTABL(2,n) holds the index in SIMAGE of the (first two characters
- of the) nth field name.
i
: SMTABL{3,n) holds the length in characters of the nth field nanme.
. 4.6.4 SIMAGE
: i
L4
. SIMAGE is a packed string of field names. Each name is begun ‘

on a word boundarye.

t -

]

RN ™ 3 Rt e e
Ny TR, RS TN

!

T Y AT P it 2 1T P A " T g PR 5. T

o bt ke 0 A AP N U i U & N I N a5 A A e 8 AL

25

4.6.5 DDESCR

DDESCR is one word describing DTABLE.

DDESCR{1) holds the number of fields described in DTABLE, i.e.,

the length of DTABLE.

#a6.6 DTABLE

There is one entry in DTABLE for eachk unique field in a record.
(A given field, social security number for example, might appear
on several pages of the same record.) It points to the DATA

entry, and describes how the data is displayed, for each field.

DTABLE(1,n) holds the index in DATA of the current contents of the

field.

DTABLE(2,n) holds the word length of the field contents in DATA.

DTABLE(3,n) holds the index in FORMAT of the display format of the

field.

DTABLE(4,n) holds the character (byte) length of the echo area for
the field. If the field length is longer than the echo length,
the extra characters are written over the last position 1in the

echo field. This length must include room for the blank which is

PR

i eeme oun N EE N e e

———

—

>

el

G Gmd Send b imd

26

prefixed to all printed fields,

DTABLE(5,n) 1is <currently unused, but is reserved for password

access to the field.

DTABLE(6,n) contains a non-zero flag which is passed to an
application specific UCHECK (user check) routine, to verify the
correctness of a new value being giver to the field. A zero flag

indicates that no verification is required.

4.6.7 FORMAT

FORMAT is a packed string of format images for the data for

each field in DTABLE. Each object time format strimg is begqun on

a word boundary. The display of blank fields is suppressed unless

a blank precedes the left parenthesis in the format string.

4.6.8 PGDSCR

PGDSCR is a block of two words describing the page name symbol

table, a combination of PGTABL and PGIMAG.

PGDSCR (1) holds the index 1in PGDSCR of PGIMAG, or zero if

PGDSCR(2) is zero.

L O

P

v LT

PGDSCR(2) holds the number of symbols in the table.

4.6.9 PGTABL

PGTABL and PGIMAG together constitute the page name symbol

table. PGTABL describes the name images in PGIMAG, and holds the

page number for each name. Pages may have no name, one, Or many

names.

PGTABL(1,n) holds the page number for the nth page name.

PGTABL(2,n) holds the index in PGIMAG of the (first two characters

of the) nth page nane.

PGTABL(3,n) holds the length in characters of the nth field nanme.

4.6.10 PGINAG

PGIMAG is a packed string of page names. Each name is begun on

a word boundarye.

4.6. 11 Page Definition (s)

Page definitions are repeatable within a given record

""'""""""'""""""“""“"""""--—

, .y v . IS chst ol . Y &

?
|
1

B . X T

G bod cod emd bmd e ey cwe ews owe oums ouw ON SEE B WY B e

definition - just as record definitions are repecatable withian file

definitions - multiple page definitions being concatenated at this
point in the record definition. The first page definitiorn is
located through RDESCR, and subsequent ones are found by

traversing the lirks in the PDESCR for each page.

4.6.11.1 PDESCR

The page descriptor, PDESCR, 1is a block of six words which are

used as follows:

PDESCR(1) holds the page number.

PDESCR(2) holds the index in RDESCR of the PDESCR for the next

page. A value of zero indicates no next page.

PDESCR(3) holds the index in RDESCR of the PDFSCR for the pravious

page. A value of zero indicates no previous page.

PDESCR (4) holds the index in PDESCR of SDESCRe.

PDESCR(5) holds the index in PDESCR of TDESCR.

PDESCR(6) holds the index in PDESCR of FDESCR.

4
+
)
i
3

JIERPURIRTPERIP S

4.6.11.2 TDESCR

TDESCR is a single word describing TTABLE.

TDESCE (1) holds the number of touch areas defined in TTABLE,

the length of TTABLE.

4.6.11.3 TTABLE

Each entry in TTABLE defines one touch area for the

There may be no, or any number of, touchk areas defined.

TTABLE(1,n) holds the index (second subscript) in FTABLE

field referenced by a touct in area n.

TTABLE(2,n) holds the x screen coordinate of the upper left

of touch area ne.

TTABLE(3,n) holds the y screen coordinate of the upper left

of touch area n.

TTABLE (4,n) holds the x screen coordinate of the lowver

corner of touch area ne.

TTABLE(5,n) holds the 1y screem coordinate of the lower

corher of touch area ne.

v ka o

g

ice.,

page.

of the

corner

corner

right

cight

e S T RIS AN

Dl o eod emmd Geed

30

4.6.11.4 FDESCR

FDESCR is a sinqgle word describting FTABLE.

FDESCR{1) holds the number of fields on the page, which is also

the length of FTABLE. A page may contain no fields.

4.6.11.5 FTABLE

There is one entry in FTABLE for each field on the page. It

gives the position on the page, and a pointer to thke description

of the data, for each field. Note that a blank is prefixed to all

printed fields.

FTABLE(1,n) holds the index (second subscript) in DTABLE for field

number n.

FTABLE{2,n) holds the x screen coordinate of the lower left corner

of the first print position in the field.

FTABLE(3,n) holds the y screen coordinate of the lower left corner

of the first print position in the field.

L Y

4.6.11.6 SDESCR

SDESCR is a block of two words describing SSTABL and SSTRNG,

vhich together define the static elements of the page.

SDESCR (1) holds the index in SDESCR of SSTRNG, or zero if

SDESCR({2) is zero.

SDESCR(2) holds the number of entries (commands) in SSTABL. This

table may bhe empty.

4.6.11.7 SSTABL

Each entry in SSTABL is a command to either 1) move the pointer

to a given position on the screen, or 2) draw a 1line from the
current pointer position to a given position, (leaving the poirnter
;i - at the end position), or 3) to vwrite at a given position one of

the character strings im SSTRNG.

SSTABL(1,n) holds the x screen coordinate of the target point.

4 SSTABL(2,n) holds the y screen coordinate of the target point.

SSTABL(3,n) may have any of the following values: 1) zero, which

conmands that the pointer be moved to the target point; 2) two,

which commands that a line be drawn from the current pointer

ARV PRIV A PRI - 0 p PO N R e, [a aiat

32

-—

position to the target point; or 3) minus the index in SSTENG of
{the first two characters of) a string to be written on the
screen, with the target point beirng the position of the lower left

corner of the first charactera.

4.6.11.8 SSTRNG

SSTRNG is a packed string of static character strings for the
page. Each string is begun on a word boundary, and nmust be

terminated by a zero byte.

— e=w ew NN ME EE N B -

x
i . ' - AWDPIIS PRI IYNEPUPT = N 2 A7 8T JPYRPPN TRRIYPY P >p o .
i = kel ks, - Ny iadbsibi St g e

33

5.0 Data Record I/0O Areas

Storage must be reserved at this point for the data record I/0
areas. A single data record I/C area pust be provided for each
user. Since all irdexing is relative to the data record I/0 area
referenced by CSTATE(4) for the current user, only the format of

one (the first) relocatable data record I/0 area is described.

5.1 RECORD

RECORD is a block of five words contairing information, used
and maintained by the system, about the record whose data is
currently in the DATA area immediately following RECORD. The last
three words of RECORD are the first three of the physical block of

data for the recori.

RECORD (1) holds a flag indicating whether or not changes have bheen

made to the record since it was last read into memory {or saved).

e

A value of one indicates change, zero indicates none.

RECORD(2) holds the sequential, physical record number of the

ol

4 record in its physical, direct filea Zero indicates that no

1 record has been accessed from the current file.

RECORD(3) holds the physical record nuamber of the next logical

record on the allocated list,

o g . L LN

'
&

""‘! ER L SR g e AR B AT PR vy

— eaw oot N T BN BN B e

!

34

RECORD(U4) holds the physical record number of the previcus logical

record on the allocated list.

RECORD(5) holds the (coded) record type of the record. A positive
value is the index (second subscript) of the entry for this
record's type in RTTABL. A value of zero imndicates that the

record has been permanently, logically deleted from the file.

5.2 DATA

DATA is a concatenated string of the data currently in the
record. Each data 1item 1is bequn on a word boundary. All
teaplates for describing the data arrangements of the various
record data types for all of the files must be specified using

this same addressing origin.

P

G Gy Gl el bused G i s e Goa eow Gas GER BN BN DR BB e

}

35

6.0 Status Record I/0 Areas

Storage may be reserved at this point for any number of status
record I1/0 areas, vwhich are aliocated for I/0 using a least-
recently-used (LRU) algorithm. It is suggested that at least four
status record 1/0 areas be provided for each file or each user

{vhichever are fewver).

6.1 STATUS

STATUS is a status record I/0 area. It contains a single,
three-word status element (STATEL) for each data record in the
logical file. STATUS is 256 words 1long, and contains 85 status
elements. The final word of STATUS is set to indicate that the

status record has been modified and must be written.

6.2 STATEL

Each STATEL status element is used to maintain the status and
links of a single data record. All STATEL are initialized by the
file creation/maintenance utility, and are of the following

format:

STATEL(1) holds the status of the nth¢1 physical record in the

data file, wvhere n is the status element's sequential position in

i . TTRIAR IR V1Y

i Sk

s G 0

OEVIY

EIECR, e NSRS L

T

e

e @

I
]
]
I
1
|
|

36

the status file. A value of -1 implies that the data record is
either deleted or unused; any other value implies the record is
allocated. When STATEL(1) indicates the data record is allocated,
the data record's status in the wvorking set indexed by CSTATE (10)
is determined by testing the bit zero-indexed from the least
significant bit by CSTATE(10). If the bit's value is zero, the
data record is included in the corresponding working set; a value
of 1 means the record is excludeda (For example, if STATEL(1) =5,
the corresponding data record is excluded from the first and third

working sets only.)

STATEL(2) holds the physical record number of the data record next
on the same list (i.e., either allocated or deleted). If the data
record is unused, i.e. 1is on neither list, the value of this

location is meaningless.

STATEL(3) holds the physical record number of the data record
previous on the allocated list. If the record is not allocated,

the value of this location is meaningless.

4

L)

]
]
l
i

37

7.0 BUFFER CONTROL

BUFCTL and BUFTBL together make up the control structure for
the least-recently-used (LRU) management of the multiple buffers

in the STATUS area.

7.1 BUFCTL

The three words 1in BUFCTL are defined and must be initialized

as follows:

BUFCTL(1) holds the index in BUFCTL of the control element for the

newest buffer in STATUS.

BUPCTL (2) kolds the index in BUFCTL of the control element for the

oldest buffer in STATUS.

BUPCTL(3) holds the index in BUFCTL cof the control element of tke

most recently allocated dedicated buffer in STATUS. It must be

initialized to zero.

T2 BUFTBL

BUFTBL contains one control element for each of the multiple

buffers in the STATUS area. A BUPTBL element is defined and must

i acanss AR B T S T et o R

(b

s owey SER HE BE W o

| SEWRES |

]
]
l
I
i

38

be initialized as follows:

BUPTBL(1,n) holds the index in BUFCTL of the control element for

the next older buffer in STATUS.

BUPTBL(2,n) holds the index in BUFCTL of the control element for

the next newer buffer in STATUS.

BUFTBL(3,n) holds the index in MEMORY of the buffer in STATUS

controlled by the element.

BUPTBL(4,n) holds the number of words in a status file record to

be rewritten and must be initialized to zero.

BUPTBL{5,n) holds the disk unit on which the status file block

¥ill reside and must be initialized to zero.

BUPTBL(6,n) holds the file block number of the status file block

and must be initialized to zero.

VI. COMMON BLOCKS

Host communication betveen procedures is accomplished through
argument lists, but in a few special cases common blocks are used.
For a description of how to tailor these common blocks for a
specific application, please see the User's Guide. All common
blocks except Z2TOUCH will be merged into other parts of ZMEMRY

with the expansion to multiple users.

ZFLAGS

FIELD - if one, indicates that a field has bcen addressed and a
field update needs to be done; is zero otherwise.
RECCNT - the count of records in the working set (included

list).

OLDTIM -~ the low order value of the system clock when the last
command was entered.

LOGTOG - if one, indicates that the user has executed a LOGON
command; -1 initially and after the execution of a LOGOFF
command.

Used by Procedures: ADD, BLOCK DATA, CMNDEX, CMNDX1, CMNDX2,
ENDTIM, FLDUPD, (main), RELEAS, REMOVE, SAMPLE, TPANEL,

WRAPUP

ZL0C

CHMND - y coordinate of command echo position; (x coordinate

= 0): nay‘have any value 16n, 0 <= n <= 31,

DIAG ~ y coordinate of diagnostics echo position; (x coordi

nate = 0); may have any value 16n, 0 <= n <= 31,
X1,Y1,%2,Y2 - coordinates of diagonally opposite corners of

the input echo window; each may have any value n,

0 <= n <= 511,

Used by Procedures: BLOCK DATA, ERROR, (main), MESSAG, SDISPL

ZMEMRY
MEMORY - see section III.1l.1.

Used by Procedures: FLDUPD, (main), SCAN, TPANEL, WRAPUP

ZTOUCH
This common block is used toc pass touch coordinates from the
device handler to TPANEL, which handles the touch pseudo-conmands.
XsY - coordiantes of touch; each may have any value mn,
0 <= n <= 31

Used by Procedures: TPANEL

ZUNIT
UNIT - the disk unit on which record-data blocks reside.
PUONIT -~ the plasma panel.
IUNIT -~ the keyboard.
SUNIT - the disk unit on which the file status blocks reside.
Used by Procedures: BLOCK DATA, DATAIO, ERPOR, FDISPL, INITL,

(main), MESSAG, RITE, SELERR, SELER1, SELER2, STATIO, WRAPUP

.

41

VII. PROCEDURE DESCFIPTIONS

ADD

This function adds a new record to the current file, inserting
it optionally before or after the current record in the allocated
list, and accesses it so that data may be entered.

Common Blocks Used: ZFLAGS

Called by: CHMNDX1

Calls: DATAIO, GETPTR, GETREC, INSTAL, LOOKUP, STATUS

- ——) enng [] || N — —

AKGET (assenmbly)
* This subroutine 1is used to extract the operator performance
neasurements from the device handler.

Called by: SAMPLE

Calls: -

- AKSET (assembly)
This subroutine is used to specify a syachronous extension to
the plasma panel character generator for time delay purposes.,
Called by: INITL

* Calls: -

j
e A S AT

—a2

-

1

e r—mn wmettil . - RN

e]

————

—

ad beaed bed bed o] bed bed beed i G S D R N WA S e e

42

ARITH

This function performs an arithmetic comparison of input
(character) data with stored data.

Called by: COMPAR

Calls: -

BLOCK DATA
BLOCK DATA initializes the common blocks ?FLAGS, ZL0C, and
ZUNIT.

Common Blocks Used: ZFLAGS, 210C, ZUKNIT

BOOLN (assembly)

This function evaluates boolean expressions (from tables
generated by BSCAN and RECTST).

Called by: SELECT

Calls: -

BSCAN
This function performs syntax analysis of (complex) ~relational
expressions.

Called by: SELECT

Calls: SYMBOL, TOKEN

Jponen”

ey Guvd N BE T .

-

2

Gl s o

BUFGET

This subroutine removes a buffer control element from ¢the

doubly-linked LRU queue.

Called by: STATIO 1

Calls: -

BUFPUT

This subroutine installs the most recently used buffer control i

element onto the doubly-linked LRU queue.

Called by: STATIO

Calls: -

BUFWRT

This subroutine physically urites a buffer if it is
appropriately flagged in its buffer control element.

Called by: STATIO

Calls: -

BULK (assembly)

This subroutine erases (or writes) solid, rectaagular blocks on
the plasma screen.

Called by: ERASE, INITL, LOGOFF, LOGON, SDISPL

Calls: -

S e ALl k)

osy om R E S ass o

44

CMNDEX
This subroutine drives execution of the command primitives.
Common Blocks Used: ZFLAGS
Called by: SCAN

Calls: CMNDX1, CMNDX2, ERROR

CHMNDIN

This function scans an input string to determine what command
primitive (if any) the string containsa.
Called by: SCAN

Calls: TEXT

CMNDX1

This subroutine drives the excution of all record-oriented
command primitives.

Common Blocks Used: ZFLAGS

Called by: CMNDEX

Calls: ADD, DATAIO, ERROR, GETPAG, GETREC, LOGOFF, LOGON,

MESSAG, PDISPL, RELEAS, REMOVE, SELECT, VALUE

CMNDX2

This subroutine drives the execution of all page- and field-
oriented command primitives.

Coamon Blocks Used: ZFLAGS

Called by: CMNDEX
Calls: ERROR, FLDNAM, GETFLD, GETPAG, PAGNAM, PDISPL, VALUE

e e ke - SRS
; _p gl gt s et

i g - g dDadiinain (oo b gl SIS A 5 o B T v r o3

45

i COMPAR

FENCCS

This function evaluates the truth or falsity of relational
expressions passed to it.
Called by: RECTST

Calls: ARITH, MATCH

This subroutine disables all Kkeyhoard input from the systenm
console.
Called by: INITL

l CONOFF

Calls: -

CONON
This subroutine re-enables the keyboard input from the system i
console.
Called by: WRAPUP

Calls: -

cvT

——

This function converts an input character string to internal

integer formata.

Called by: VALUE

Calls: -

God ool omd ewnd demd Gued

T g T P e e e S Sl G el St Lo o st AR CL I

Rl M2 4 eiie

2

CVTFLD

This function converts and copies an entered string into its
assigned record data field.
Called by: FLDUPD

Calls: -

DATAXIO
This subroutine performs data record read/write operations.
Common Blocks Used: ZUNIT
Called by: ADD, CMNDX1, GETREC, LOGOFF, LOGON

Calls: -

DISPLA (assembly)

This subroutine draws 1lines on the plasma sScreen or simply
moves the graphics cursor.

Called by: SDISPL

Calls: -

ELINE (assenbly)

This subroutine moves the write-position on the plasma screen
to the beginning of a given horizontal line (on a multiple of
sixteen boundary).

Called by: (main), ERROR, MESSAG

Calls: -

N —

47

ENDTIN

This subroutine updates the current user's user-performance
data area with the elapsed execution time (in 60Hz clock ticks) of
the most recent directive.

Common Blocks Used: ZFLAGS

Called by: (main)

Calls: TDIF, TIMGET

ERASE
This subroutine erases a line of text on the display screen.
Called by: (main), ERROR, MESSAG

Calls: BULK

ERROR

This subroutine writes (or causes to be written) all error
messages.

Common Blocks Used: ZLOC, ZUNIT

Called by: CMNDEX, CMNDX1, CMNDX2, FLDUPD, SCAN

Calls: ELINE, ERASE, SELEkR, UERROR

FDISPL
This subroutine writes one or all dynamic elements of a page.
Common Blocks Used: ZUNIT
Called by: PDISPL

Calls: MOVCUR, RITE, TINE

v ', N P Chaall s e ke AR st e et L

48

FLDNAM

This function accesses the field of the curreant page with a
given name.
Called by: CMNDX2

Calls: GETFLD, SLOOK

FLDUPD
This subroutine checks the validity of a new field value, and
drives the rest of the field update process.

Common Blocks Used: ZFLAGS, ZMEMRY

Called by: {main)

Calls: CVTFLD, ERROR, PDISPL, UCHECK

GETBIT

This function returns the included/excluded/deleted status of a

record.

. Called by: GETREC, INSTAL, RELEAS

Calls: TIAND, ISHFTL, ISHFTR, STATUS

GETFLD

This function moves the cursor to the next field, previous
field, last field, or field number n, of the current page,
; Called by: CMNDX2, FLDNAM

b Calls: MOVCUR

. g e [. R N Y 3 M

e a1 ’

GETPAG

This function displays the next page, previous page, last page,
or page number n, of the current record.

Called by: CMNDX1, CMNDX2, PAGNANM

Calls: -

GETPTR

This function returns the physical record number of the record
next or previous on the allocated list.

called by: ADD, GETREC, INSTAL

Calls: STATUS

GETREC

This function accesses the first record, next record, previous
record, nth subsequent record, nth previous record, or the last
record in the current file.

Called by: ADD, CMNDX1, REMOVE, SELECT

Calls: DATAIO, GETBIT, GETPTR, MESSAG ’

IAND (assenmbly) I

This function returns the bit by bit "“and" of all its

arguments. ‘
Called by: GETBIT, PUTBIT

Calls: -

ot oud oed omd et O omd Gy GEd O DN O OB BN R O e e

B GRSy) ‘ rerrpm; »

PREVEL S KW

— eass G P N e o

INITL
This subroutine establishes file definitions.
Common Blocks Used: ZUNIT
Called by: (main)

Calls: AKSET, BULK, CONOFF, UINITL, OTSWA

INSTAL

This subroutine links a new record into the allocated list.

Called by: ADD

Calls: GETBIT, GETPTR, PUTPTR

IOR (assenbly)

This function returns the bit by bit *or*" of all its arguments.
Called by: PUTBIT

Calls: -

ISHFTL (assembly)

This function returns the specified left shift of a value.
Called by: GETBIT, PUTBIT

Calls: -

ISHFTR (assembly)

This function returns the specified right shift of a value.

Called by: GETBIT

Calls: -

51

LOGOFF
This subroutine erases the plasma screen, deactivates the touch
panel, updates the file control record, and saves the current
record if it has been changed. (It also prevents further use of
the system by the current user until a LO command is executed.)
Called by: CHMNDX1, WRAPUP

Calls: BULK, DATAIO, STATUS, TOUCH, ULOG

LOGON

This subroutine initializes the 1included 1list, erases the
plasma screen, and activates the +touch panel. (It also enables
use of the system by the current user.) The system is left in the
no-record-yet-accessed condition.

Called by: CHMNDX1

bt e oms g OER N WE B e

Calls: BULK, DATAIO, MESSAG, OFFTP, RELFEAS, TOUCH, ULOG

LOOKUP
This function performs a standard symbol-table look-up.
Called by: ADD, PAGNAM, RECTST, SLOOK

Calls: MATCH

b] [S vl Sl [WY i PO PO

1
{

R e

—

(main)

This procedure first calls INITL to initialize the files; then
loops to pick-up entered strings and <call CMNDEX or FLDUPD as
appropriate.

Common Blocks Used: ZFLAGS, 2L0C, ZMEMRY, ZUNIT

Called by: (monitor)

Calls: ELINE, ENDTIM, ERASE, FLDUPD, INITL, OFFTP, ONTP,

PNWAIT, SAMPLE, SCAN, UPENMPT

MATCH

This function compares two character strings of egqual length
for equality.

Called by: COMPAR, LOOKUP, SYMBOL, TOKEN

Calls: -

MESSAG
This subroutine writes/erases informative messages.
Common Blocks Used: 2ZLOC, ZUNIT
Called by: CMNDX1, GETREC, LOGON, SELECT

Calls: ERASE, ELINE, UMSG

MOVCUR (assembly)

This subroutine moves the I/0 cursor to a specified screen

location.

Called by: FDISPL, GETFLD, TPAKNEL

Calls: -

53

NOT (assembly)
This function returns the bit by bit complement of a value.
Called by: PUTBIT

Calls: -

OFFTP (assembly)
This subroutine inhibits touch panel in:erruptsa.
Called by: LOGON, (main)

Calls: -

ONTP (assembly)
This subroutine arms the touch panel for further interrupts.
Called by: {(main)

Calls: -

This subroutine is used to control object time system work area
allocations.
Called by: INITL

Calls: -

PAGNAN
This function causes the display of the page (of the current
record) having a given name.

Called by: CMNDX2

Calls: GETPAG, LOOKUP

l OTSWA (assembly)

i iom

]
]
1
1
1
I

O PRNE I

54

PDISPL

This subroutine causes to be written on the plasma screen
either an entire page, or the dynaaic part of eithe an entire
page or a single field.

Called by: CHMNDX1, CMNDX2, FLDUPD

Calls: FDISPL, SDISPL

PRKILL (assembly)

This subroutine disables any active output operations to the
plasma panel.

Called by: WRAPUP

Calls: -

PNWAIT (assembly)

This subroutine waits for all queues on the plasma panel to
quiesce.

Called by: (main), TIME, TPANEL, WRAPUP

Calls: -

PUTBIT

This subroutine updates the included/excluded/deleted status of
a record.

Called by: RELEAS, RENOVE

Calls: IAND, IOR, ISHFTL, NOT, STATUS

et

——

PUTPTR
This subroutine updates the
previous on the allocated list.
Called by: INSTAL, REMOVE
Calls: STATUS
PWRITE (assembly)
This subroutine writes a given
location on the plasma screen.
Called by: SDISPL

Calls: -

RECTST
This subroutine examines the

truth or falsity of relational

subroutine in tabular fornm.

Called by: SELECT

Calls: COMPAR, LOOKUP, UTEST

RELEAS

This function puts all allocated

in all wvorking sets.

Common Blocks Used: ZFLAGS

e
N

Called by: CMNDX1, LOGON

Calls: GETBIT, PUTBIT

HM‘——‘;—-‘

pointer to the

character string at a

current record

55

record next or

given

to evaluate the

expressions passed to this

records (in the current file)

dad/sc oo d vty e I X hagee

itV DG U A Al -

RN

PR

B R SRR SuIDT I R T v R B mee

Pvieo o

56

REMOVE

This function removes the current record from the current
working set, and depending on the wvalue of an input flag, may
delete the record from the file as well. The system 1is left in
the no-record-accessed condition.

Common Blocks Used: ZFLAGS

Called by: CMNDX1, SELECT

Calls: GETREC, PUTBIT, PUTPTR

RITE

This subroutine is called only by FDISPL, and exists solely so
that the write of each field on the plasma screen may be done
without subscripting a format variable, (which 1is syntactically
illegal).

Common Blocks Used: ZUNIT

Called by: FDISPL

Calls: -

SAMPLE

This subroutine is used to sample the user performance
measurements collected by the device handler.

Common Blocks Used: ZFLAGS

Called by: (main)

Calls: AKGET, TDIF

Ea

B Eye T et an AT o ek ST S X bl A a2y 5 R R

o A et o ile

57

’é ! SCAN

This subroutine drives the interpretation and execution of
commands (except for those pseudo-commands handled by FLDUPD and
TPANEL) .

Common Blocks Used: ZMEMRY

Called by: {main)

Calls: CMNDEX, CMNDIN, ERROR, USCAN

SCREEN {assembly)

This function converts a touch panel coordinate into a

corresponding screen coordinate.
] Called by: TLOOK

Calls: -

SDISPL

This subroutine drives the display of the static elements of a
page on the plasma Sscreen.
% ; Common Bloccks Used: ZLOC

1 Called by: PDISPL

Calls: ROULK, DISPLA, PWRITE, TIME

= oy . o faa . L R e o SRRPE B Y NPT B e ke A -

T

SELECT
This function drives execution of the select command, which
selects a subset of the current working set to be the newv working
set, based on (complex) relational expressions entered by the
user. The system is left in the no-record-yet-accessel condition.
Called by: CHMNDX1

Calls: BOOLN, BSCAN, GETREC, MESSAG, RECTST, REMOVE

SELERR
This subroutine initiates the writing of error messages fér
errors detected during syntax analysis of tke select command.
Common Blocks Used: ZUNIT
Called by: ERROR

Calls: SELER?1, SELER2

SELER?

This subroutine writes part of the set of error messages for
errors detected during syntax analysis of the select command.

Common Blocks Used: ZUNIT

Called by: SELERR

Calls: -

- [

4

l
I
l
i

59

SELER2

This subroutine writes part of the set of error messages for
errors detected during syntax analysis of the select command.

Common Blocks Used: ZUNIT

Called by: SELERR

Calls: -

SLOOK

This function translates an input field name into a pointer to
the descriptor of the field referenced.
Called by: FLDNAM

Calls: LOOKUP

STATIO

This subroutine performs LRU buffered I/C of file status
records.

Common Blocks Used: ZUNIT

Called by: STATUS

Calls: BUFGET, BUFPUT, BUFWRT

STATUS

This subroutine swaps the status records to allow processing of
the status information for any given data record.
Called by: ADD, GETBIT, GETPTR, LOGOFF, PUTBIT, PUTPTR

Calls: STATIO

e pre AV (R

Biud Sud Buiid Beiid DI D WRER D B

.3

€

Pl bond Semd bewed beed Bl

SYMBOL

This function assigns relational expressions to the table which
is used during the evaluation phase of the select command.

Called by: BSCAN

Calls: MATCH

TDIF (assembly)

This function conputes the unsigned difference (modulo 65536)
between two low order system clock €0 hertz tick counts.

Called by: ENDTINMN, SAMPLE

Calls: -~

TEXT

This function extracts the next symbol from a command line, and
returns the first two characters of that symbol.

Called by: CMNDIN

Calls: -

TIME

This subroutine synchronizes use of the user's UTIME subroutine
to prevent non-reentrancy problems.

Called by: FDISPL, SDISPL

Calls: PNWAIT, WUTIME

i
!
b
;
k|

DR

PERESTPURRTOREY RS, "SR ST IV

NSN3

.
F
‘

4
)
.

o . . P v mv‘,.'?“‘*
£ . ‘ i " o & 2 S L

G oot oy omd Gumd bems

TIMGET (assembly)

61

This function returns the current low order word of the line

frequency clock.
Called by: ENDTINM

Calls: -

TLOOK

This function translates touch coordinates into a pointer to

the descriptor of the field touched.
Called by: TPANEL

Calls: SCREEN

TOKEN

This function extracts and classifies the next token
relational string part of a select coamand line.

Called by: BSCAN

Calls: MATCH

TOUCH (assembly)
This subroutine activates/deactivates the touch panel.

Called by: LOGOFP, LOGON, WRAPUP

Calls: -

P— B 1 IR WP T AN RO TR I R e R s o

in the

62

TPANEL

This subroutine is the ' touch panel interrupt cospletion
routine.

Coamon Blocks Used: ZFLAGS, ZMEMRY, ZTOUCH

Called by: (monitor)

Calls: MOVCUR, PNWAIT, TLOOK, UTIME, UTOUCH

VALUE
This function extracts the next symbol from a coamand line, and

tries to convert it to an integer forpat.

ollesiliimcady ;.

Called by: CHNDX1, CHNDX2

Calls: cC¥VT

el i

WRAPUP
This subroutine is invoked during progras termination to allow i
device deactivation.
Coamon Blocks Used: ZFLAGS, ZMEMRY, ZUNIT
Called by: (main) i
Calls: CONON, LOGOFF, PNKILL, PNWAIT, TOUCH, UWRAP

[P

- AR ——————

. AR

63

VIII. FILE CREATION/MAINTENANCE UTILITY

The file creation/maintenance wutility for the Generic Data

Transaction System consists of two parts. The first, FILUPD,

compacts the user's disk and then starts the second part. The

second part, NPEDCU, is a separate program that lets the user
perform any of four activities. Each of these activities operates
on one logical file at a tinme. Bach logical file consists of a
physical data file and a physical status file as described in Part
IV of this document.

The four activities available are: 1) to create a logical
file; 2) to increase the capacity of a logical file; 3) to check a

logical file for internal consistency; and 4) to reorder the data

— eeees omu R E B B e

records {(in a logical file) so that their logical and physical
orders are the sanme. If the user chooses to reorder a file
(activity four), a check for consistency (activity three) is
1 : automatically done first.

. The check for consistency 1is provided because an abnormal
termination of execution of the genmeric system could leave changes

to the logical file only partially recorded in the permanent disk

files. In the event of such an abhnormal termination, a
1 consistency check can be performed to determine whether or not the
9 logical file(s) in use at the time need to be restored from back-
‘ up copies. A consistency check is automatically done before a

file is reordered because internal consistency is necessary for

the reordering operation to function correctly.

B it e A i et o ol e it a et dini IR s iR

é6u

The I/0 operations performed by the generic system are executed
most efficiently when the logical and physical orders of the data
records are identical. I1f many data records have been added to
and deleted from a given file since it was created, the records*
logical order may differ significantly from their physical order.
In such a case, a reordering of the data records (activity four)

could significantly improve the performance of the generic systen.

Lo

It is for this reason that the reordering option was included.

Gl ot o) S g Semk S ey ol DN BN ONE DB N N N I Y s

-

WA A S

&

I
i
1
i
1
|
I
l
I
I
i
I
|
I
I
i
I
|
i

IX. APPLICATION SPECIFIC PROCEDURES

Application specific procedures may exist as user supplied
sof twvare appendages at strateqgic points in the generic data
transaction system. It is anticipated that the procedures will be
used to customize the operation of the generic system in such a
way as to either modify or extend the capabilities required by the
user's specific application. The procedures must exist as FORTKAN
IV callable subroutines and/or functions in order to be compatible
with the generic systen. Also, care must be taken in the design
of the procedures so that 1) the return path through the overlay
structure 1is preserved, 2) procedures <called by completion
routines adhere to the restrictions for that type of subprogram,
3) procedures called as synchronous extensions to interrupt
handlers do not cause the issuance of EMNTs (emulator traps
intructions) in addition to the above restrictions for completion
routines, and 4) as an added restriction for completion routines
or synchronous extension routines there may not be any overlay
operations invoked, ie., all subprograms called must exist in the

permanently resident program segment.

UCHECK

This function is called by FLDUPD when DTAELE(6,n) contains a
non-zero value for the field being updated. The call is made
immediately prior to the call to CVIFLD, which is normally used to

convert and assign a value to the field being updated. A returned

TN R AT SRRET A %

RPETO

I
i
i
|
l
!
]

66

value of zero indicates processing is complete except for the
reporting of any detected errors (i.e. the field has been updated,
refreshed on the screen, and FIELD has been reset if no field is
to he addressed on the next pass through the control cycle) and a
returned value of one indicates that CVTFLD wil' be called after

reporting any detected errors.

UERROR

This subroutine is called by ERROR immediately after defining
the diagnostic output line but before interpretation of the error
code. Further interpretation of the error code into the normal
set of messages is inhibited by setting the error code to zero.
The error count in the user-performance data area will not be
incremented except when recognizable error codes are interpreted

into the normal set of messagesa

UINITL
This subroutine is called by INITL after the initial screen
erase, the assignment of the standard logical units and completion

routines, and initialization of the user-performance data area.

ULOG

This subroutine is called by LOGON or LOGOFF (as indicated by a
flag) immediately before resetting the user-performance data area.
In both cases the screen has been erased, the system is in the no-

record-yet-accessed condition, and the control record is current.

When the callimg subroutine is LOGON, the touch panel is active.

————

The touch panel has already been deactivated when the calling

subroutine is LOGOFF,

UNSG

This subroutine is called by MESSAG immediately after defining
the diagnostic output 1line but before interpretation of the
message code, Further interpretaion of the message code into the
normal text is inhibited by setting the message code to zero. A
message code of minus one will immediately erase the diagnostic

output line.

UPRMPT

This subroutine is «called by (main) at the beginning of each
control cycle after the echo line 1is defined but before the
command read is initiated. The user-performance data area has
been updated to reflect the most current command before the call

is made.

USCAN

This function is called by SCAN immediately prior to the normal
interpretation of the current command line by CMNDIN. A returned
value of zero indicates that processing is complete except for the
reporting of any detected errors, and a returned value of one
ipdicates that CMNDIN should be called after reporting any

detected errors. Only commands which are processed by CMNDIN will

result in the updating of the user-performance data areaa

i AR

|
|
|

S toed ond Sul bl Seand eeed

Rt L

68

UTEST

This function is c¢alled by RECTST in the evaluation of a
Boolean "Select" request prior to the normal evaluation of an
element of the relational expression table by COMPAR. A bipary
zero (false) or one (true) may be returned, or a minus one may be

used to flag that normal evaluation by COMPAR is regquested.

UTINE

This subroutine 1is called by subroutine TIME for both of the
subroutines FDISPL and SDISPL, by FORTRAN IV completionr routine
TPANEL, or as a synchronous extension to the plasma panel
interrupt server preceding each character generation. All calls
are made immediately prior to an operation which will result in
alphanumeric text being writtean to the plasma panel. If module
NPRDCC is compiled with the /D switch, (iee. UTIME is used as a
synchronous extension to the plasma panel interrupt hardware),
care npust be taken that UTIME does not cause an EMT to be issunei.
Otherwise, the usual restrictions normally applying to completion
routines must be observed unless the touch panel is disabled by
ULOG. A flag passed to UTIME is used to indicate from where it

vas called.

UTOUCH

This subroutine 1is called from FORTRAN IV completion routine
TPANEL before any other processing occurs in response to a touch
panel interrupt. The restrictions applying to completion routines

must be observed.

69

UWRAP

This subroutine is called fron KRAPUP during progran

e

termination after interrupts to the plasma panel and touch panel

oi

have been disabled.

s

L

3 S T e R TR e S SRNP0 W -

G el Gy) e e G ey cws eww ame e DS By BED BEE B e

e RTINS U I NNl R 3 1S I ANE T AT G A WD P4 T et

eme ol B o ..

70

APPENDIX A

STATE TABLES

This appendix contains a tabular description of the finite
state automaton used in the parsing of arbitrarily complex boolean
search specifications by FORTAN IV subprogram BSCAN and the
operator precedence push-down automaton used in the evaluation of

the parsed expressions by assembly subprogram BOOLKN.

The entries in both tables are constructed similarly, having
the form:
A
S
R
vhere "A" represents the action or action{(s) to be taken; "5" is
the next state (if different than the current state); and "R" is a
control variable value (for BSCAN) or statement label (for BOOLN)

indicating which section of each subprogram is actually executed.

Y

L R, AP R 5N _

——

ol ud Geed oo emd owmw

71
TABLE 1: State Table for ESCAN
r u T
r o
k
e e
n n
t CUFRENT TOKEN
s T
T
o p 7 10
o k e 0 1 2 3 4 5 6 8 11
k 9 12
e n { & | -) string >=2<{#<
r n
| i I | l i | { |
1 initial | =32y 2 | -8 { 4 { -6 3t -7 |
{ 1 3 A | {
[| D S |) | | i {
2 (| 11 4 2 1 -9 } 4 =10} S5 } =12 |
| A B I 3 1 i 4 | |
1 77T 7 1 i7 b T I i
3 string | | -4 | 8 {~-14 ¢ 9 | -4} -13 |
c b9 b5 1 I8 | |
U ...
R | | S S | |) |
R 4 - { =171 2 =15} 4 | =161 3) =13 4
E | I | I3 I 2 | |
N ———
T | 7 1 70D | I v |
S (string § =20 § -4 | 8 -1} 9 |} -3 }§ 6 |
8 b5 | I 3 1 (N I |
S { | | | | I € | |
T 6 >=2(#L { =23 § -5 | =22 | =24 | ~21 7 -2 i
A | 1 { | { i 12 |
'r - - - - - - ——— A —— - - - -
E | | 1 D | i |
7 value | =33 | -19) =25)} =34)} 9 | =26 | =27 |
) | | | 1 7 | | |
| [D S | i l | | |
8 | | =31} 2 | =29 | 4 1 =30 | 3 | -28 i
| I I | i3 P2 | |
[S | | |) DT | 1 |
9) i {1 =35} 8 | -38} 9 § -37}) -36 |
{10 | P 6 1 7 |)

T AW AT 2 N SN IS 7t oy

e ¢ 4 it 5L N d A S e

G

A

- he e

A

e i ke i bl
B S

i

e s osd N EE B e ..

Actions:

States:

References:

72

increment parenthesis counter

decrement parenthesis counter

if parenthesis counter not balanced, error <- -1
relational operator code <~ current token value - 6
relational operator code <- 7

close relational expression

ISTAT <- %

> DEST <- #

73

TABLE 2: State Table for BEOOLN

L BT R e AT A A S e AL

P C
l r u T
] S e r o
N t v r k i
: l a i e e 5
:] t o n o by
e u t CURRENT TOKEN
s T i
: | N Ty
i1 u T o p i
m o k e -1 -2 -3 -4 -5 0 >0 5
' b k e &
e e n { &] -) ; operand H
r n K
... EA
! ' initial ¢ A) i i A] } i E | §
\ 0 or 1 ' e | I - 1t - 1 1 | ;
i ([B { i 2 | | I 2
3 ' ..
: C | f & | a | { b+ B | {
U 1 operand | - | 2 {1 4 § - | 1 | | |
! R } b3 14 | i 5 1 6 | |
R ————————— Y —— S ——— ——— - ——— - - - —— —
E | A | | i A | | E
N 2 & i 0 1 - 1 - 1 P -+ - 1 3
f . T I B | { i 2 | | i 8
:i | i A | C | | D t B | | :
p 3 €operand § - | 2 | 4 § -} 1 - *
ix S { i 3 { 10 i i 5 6 ' { ’
M e e e o i i e o e o e . - - ———
A)} A | | A | I E |
4 T 4 | I R b -0 - 1 5 | »
' E [R | ! I 2 | | L9 1 :
; ———_— e e e e e e e e e e e i] :
Ly - s
o i I A | € } D | B | | i
! 5 Joperand { -)} 2 1 4 4 - 1 1 | | §
X | 1 3 ¢ 10 | I S 1 6 | | g
B ;
!

:-: s 6T 3 N ‘p TR ARG e IR AR Y R Y M S o s

Actions: A

| E

AN

States: #

References:

10

push oper
evaluate
error if
evaluate
evaluate
error if

evaluate

> RECURS
> PUsH

> PUSH2
> PUSH4
> EVALR
> EVALS

> PEVALM

=> PEVAL3

> PEVALS

> EPUSH4

ator

stack to top; return result;
parentheses unbalanced

stack to top or (; push result
stack to (; push result;
parentheses unbalanced

unary operators; push result

B2 LR AT

P s o i 22 .

oo

R i i

- finis -

e

~—

5
=~ E
3 - 3
‘ 4

- E

7

(RSP

P Geed ek bemd b Bed e

~ w 5o P AR R Ry e S €
T e T T e o L . R e MR AL AT PR »

